Decentralized Vibration Control in a Launch Vehicle Payload Fairing
نویسنده
چکیده
* Member ASME ABSTRACT The vibro-acoustic environment inside a launch vehicle payload fairing is extremely violent resulting in excessive development costs for satellites and other payloads. The development of smart structures and active noise and vibration control technologies promised to revolutionize the design, construction and, most importantly, the acoustic environment within these fairings. However, the early promise of these technologies has not been realized in such large-scale systems primarily because of the excessive complexity, cost and weight associated with centralized control systems. Now, recent developments in MEMS sensors and actuators, along with networked embedded processor technology, have opened new research avenues in decentralized controls based on networked embedded systems. This work describes the development and comparison of decentralized control systems that utilize this new control paradigm. The controllers are hosted on numerous nodes, possessing limited computational capability, sensors and actuators. Each of these nodes is also capable of communicating with other nodes via a wired or wireless network. The constraints associated with networked embedded systems control that the control systems be relatively simple computationally, scalable and robust to failures. Simulations were conducted that demonstrate the ability of such a control architecture to attenuate specific structural modes.
منابع مشابه
Initial Structural-Acoustic Modeling and Control Results for a Full-Scale Composite Payload Fairing for Acoustic Launch Load Alleviation
1 Launch loads, both mechanical and acoustic, are the prime driver of spacecraft structural design. Passive approaches for acoustic attenuation are limited in their low frequency effectiveness by constraints on total fairing mass and payload volume constraints. Active control offers an attractive approach for low frequency acoustic noise attenuation inside the payload fairing. Smart materials s...
متن کاملActive Structural-Acoustic Control for Composite Payload Fairings
1 Launch loads, both mechanical and acoustic, are the prime driver of spacecraft structural design. Passive approaches for acoustic attenuation are limited in their low frequency effectiveness by constraints on total fairing mass and payload volume constraints. Active control offers an attractive approach for low frequency acoustic noise attenuation inside the payload fairing. Smart materials s...
متن کاملTrajectory Optimization for a Multistage Launch Vehicle Using Nonlinear Programming
This work is an example of application of nonlinear programming to a problem of three-dimensional trajectory optimization for multistage launch vehicles for geostationary orbit missions. The main objective is to minimize fuel consumption or equivalently to maximize the payload. The launch vehicle considered here, Europa-II, consists of 5 thrust phases and 2 coast phases. Major parameters of the...
متن کاملSimulation of Launch Vehicle Dynamics on an Interstage Structure
Flying a rover from low earth orbit to the surface of the moon requires an interstage structure. This interstage structure serves two main purposes: to contain the rocket motors used for trans lunar injection and braking, and to support the lander and rover inside the launch vehicle payload fairing. The interstage is subject to various forces imposed by the launch vehicle, and must be designed ...
متن کاملRobust Integral Sliding-Mode Control of an Aerospace Launch Vehicle
An analysis of on-line autonomous robust tracking controller based on variable structure control is presented for an aerospace launch vehicle. Decentralized sliding-mode controller is designed to achieve the decoupled asymptotic tracking of guidance commands upon plant uncertainties and external disturbances. Development and application of the controller for an aerospace launch vehicle during a...
متن کامل